solve $\frac{{1 - \left| x \right|}}{{2 - \left| x \right|}} \ge 0$

  • A

    $R$

  • B

    $\left[ { - 1\,,\,2} \right)\,\, \cup \,\left( {2\,,\,\infty } \right)\,$

  • C

    $\left[ { - 1\,,\,1} \right]\,\, \cup \,\left( {2\,,\,\infty } \right)\,$

  • D

    $\left( { - \infty ,\, - 2} \right)\,\, \cup \,\,[ - 1,\,1]\,\, \cup \,\,(2,\infty )$

Similar Questions

Prove that the Greatest Integer Function $f: R \rightarrow R ,$ given by $f(x)=[x]$, is neither one-one nor onto, where $[x]$ denotes the greatest integer less than or equal to $x$.

Domain of the function $f(x) = {\sin ^{ - 1}}(1 + 3x + 2{x^2})$ is

The domain of the function $f(x){ = ^{16 - x}}{\kern 1pt} {C_{2x - 1}}{ + ^{20 - 3x}}{\kern 1pt} {P_{4x - 5}}$, where the symbols have their usual meanings, is the set

The range of $f(x) = \cos (x/3)$ is

If $\,\,f(x) = \left\{ {\begin{array}{*{20}{c}}
  {3 + x;\,\,\,\,\,x \geqslant 0} \\ 
  {2 - 3x;\,\,\,\,\,x < 0} 
\end{array}} \right.$ then $\mathop {\lim }\limits_{x \to 0} f(f(x))$ is equal to -