solve $\frac{{1 - \left| x \right|}}{{2 - \left| x \right|}} \ge 0$
$R$
$\left[ { - 1\,,\,2} \right)\,\, \cup \,\left( {2\,,\,\infty } \right)\,$
$\left[ { - 1\,,\,1} \right]\,\, \cup \,\left( {2\,,\,\infty } \right)\,$
$\left( { - \infty ,\, - 2} \right)\,\, \cup \,\,[ - 1,\,1]\,\, \cup \,\,(2,\infty )$
Let $f: R \rightarrow R$ be a function defined by $f(x)=\left\{\begin{array}{l}\frac{\sin \left(x^2\right)}{x} \text { if } x \neq 0 \\ 0 \text { if } x=0\end{array}\right\}$ Then, at $x=0, f$ is
If domain of the function $\log _e\left(\frac{6 x^2+5 x+1}{2 x-1}\right)+\cos ^{-1}\left(\frac{2 x^2-3 x+4}{3 x-5}\right)$ is $(\alpha, \beta) \cup(\gamma, \delta]$, then $18\left(\alpha^2+\beta^2+\gamma^2+\delta^2\right)$ is equal to $....$.
Domain of $log\,log\,log\, ....(x)$ is
$ \leftarrow \,n\,\,times\, \to $
Statement $1$ : If $A$ and $B$ be two sets having $p$ and $q$ elements respectively, where $q > p$. Then the total number of functions from set $A$ to set $B$ is $q^P$.
Statement $2$ : The total number of selections of $p$ different objects out of $q$ objects is ${}^q{C_p}$.
$f(x,\;y) = \frac{1}{{x + y}}$ is a homogeneous function of degree